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Abstract—In this manuscript we present the HyperKron
Graph model: an extension of the Kronecker Model, but with
a distribution over hyperedges. We prove that we can efficiently
generate graphs from this model in time proportional to the
number of edges times a small log-factor, and find that in
practice the runtime is linear with respect to the number of
edges. We illustrate a number of useful features of the HyperKron
model including non-trivial clustering and highly skewed degree
distributions. Finally, we fit the HyperKron model to real-world
networks, and demonstrate the model’s flexibility with a complex
application of the HyperKron model to networks with coherent
feed-forward loops.
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I. INTRODUCTION

One of the long-running challenges with network analysis

is that there remains a gap between the features of real-world

network data and the types of network data that are produced

by most efficient synthetic network generators. For instance,

simple models such as configuration model [4] and Chung-

Lu [1] are designed to capture the degree distribution of a

network, but typically fail to capture any higher-order pattern

such as a clustering coefficient. Conversely, models that are

designed to capture arbitrary features including clustering, such

as exponential random graph models, often have exponential

computational complexities due to the difficulty of the sampling

procedure [7], [16]. More structural models, such as stochastic

block model, are often designed to test extremely specific

hypotheses involving communities and may not be appropriate

as more general models. Pragmatic models such as BTER

explicitly place clustering in a carefully designed pattern [24]

at the cost of a larger description of the network.

Recently, there has been a surge of interest in higher-order

network analysis [5], [6], [18], [34], [39], [40]. At a high-level,

this constitutes an analysis of network of data in terms of multi-

node patterns such as motifs and also in terms of stochastic

processes that depend on more history. One of the origins

of these studies is Milo’s celebrated paper on the presence

of higher-order interactions [27], which showed that some

subgraphs appear more frequently than others. While there are

plenty of network models (such as those mentioned above),

the efficient ones often cannot model arbitrary higher-order

interactions such as motifs and their interactions.

The primary contribution of this manuscript is a simple and

flexible network model that has the ability to capture a single

type of higher-order interaction. We call it the HyperKron

model. (This is introduced formally in §III.) As might be

guessed from the name, the model is a generalization of the

extremely parsimonious Kronecker graph model [25], [26],

[35]. Instead of edges, it uses hypergraph modeling [8] to

directly model the higher-order interactions—which is where

our inspiration came from. In comparison with many of the

network models above, the key difference is that the probability

model underlying it specifies a distribution on hyperedges rather

than edges. We then associate each hyperedge with a specific

network motif (such as a triangle or feed-forward motif).

One of the challenges with this model is that an exact

and efficient sampling procedure for the desired hyperedge

probability distribution is non-trivial to create. We explain our

efficient procedure in §IV. We show when using a 3 node motif,

the HyperKron model generates substantial triadic clustering in

fitting real-world network data, far beyond what is possible with

Kronecker models, but lacks clustering structure in four cliques

that is present in real-world networks (§VI-A). We finally show

that the model is flexible enough to model directed and signed

interactions. (§VII).

II. PRELIMINARIES

Here we present the background, terminology, and notation

to understand the HyperKron model presented in §III.

Graphs and matrices. Let G = (V, E) be an unweighted,

undirected graph, where V is the set of vertices and E is the

set of edges. Graphs are associated with adjacency matrices A,

where Ai j is equal to 1 if i and j are connected by an edge,

and 0 otherwise, and also Ai j = Aji .

Sampling Graphs from Probability Matrices. There is a

large body of work on modeling graphs, many of which were

mentioned in the introduction and further detailed in §VIII.

What is relevant here is the class of graph generators which

involves sampling edges from a probability matrix. Examples

include the Erdős-Rényi model [14], the Chung-Lu model [12],

the Stochastic Block Model [21], and the Kronecker Model [11],

[25], [26]. These generators begin with a matrix of probabilities,

P, with the number of rows and columns equal to the number

of nodes desired in the graph. For each entry i, j of P, set

Ai j equal to 1 with probability Pi j , and set Ai j equal to 0
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otherwise. This allows for generating many instances of a graph

from a single generator matrix P.

Kronecker Graph. The HyperKron model is built on many

of the same motivations of the Kronecker Graph Model [11],

[25], [26], so we briefly cover that model. Let P be an n × n
matrix of probabilities called an initiator matrix, with n small

(n between 2-5 is typical). The Kronecker product of P with

itself is the n2 × n2 matrix constructed by multiplying every

entry of P with itself. For example, if P is the 2 × 2 matrix[
a b
c d

]
, then the Kronecker product P ⊗ P is

P2 = P ⊗ P =

[
a · P b · P
c · P d · P

]
=

[ aa ab ba bb
ac ad bc bd
ca cb da db
cc cd dc dd

]
.

Define the rth Kronecker product Pr : nr×nr to be r Kronecker

products of P with itself:1 Pr = P ⊗ Pr−1. Then Pr is the

matrix of probabilities used to sample a graph.

Kronecker Graph Properties. The Kronecker graph model

has a number of desirable properties such as skewed de-

grees [35] and similar properties to real-world networks [26].

Additionally, storage of the initiator matrix P is very cheap, at

just n2 entries (where n is often taken to be 2). It has been used

as a synthetic generator for parallel graph benchmarks [30] (the

Graph500). Choosing parameters in the Kronecker model to

fit a given graph has been studied using maximum-likelihood

methods [26] and method-of-moments estimators [17].

Hyperedges. The HyperKron model will rely on the notion

of hyperedges. A hyperedge is just a set of vertices, generalizing

edges—sets of two vertices. All hyperedges in our model will

have the same cardinality. (For simplicity, we describe our

model where each hyperedge has three vertices.) When we

create a graph from a hypergraph in the HyperKron model, we

associate each hyperedge with a motif. For most of our paper,

this motif is a triangle (§III - VI), yet HyperKron is flexible

enough to handle other hyperedge structures (§VII). Though

HyperKron uses the concept of hypergraphs, it is important to

note that we simply use mechanisms to generate hyperedges

to impose higher-order structure on a traditional graph.

III. THE HYPERKRON MODEL

The HyperKron Model starts with a tensor and Kronecker-

powers it to get a massive tensor of probabilities corresponding

to hyperedges, a generalization of the Kronecker model which

starts with a matrix and Kronecker-powers it to get a large

matrix corresponding to edges. For the sake of simplicity in

our discussion, we consider hyperedges with up to three nodes

(3d tensors) although the ideas extend beyond this setting. To

generate a graph, we associate the hyperedge with a triangle.

The set-up extends to other motifs on three nodes (see §VII).

In more detail, we start with a 3d initiator tensor, P, with

dimensions n×n×n. Just like in the Kronecker model, the value

of n should be small, between 2 to 5, and entries of P should be

between 0 and 1. Symmetric in the case of a tensor means any

permutation of indices has the same value. P112 = P121 = P211.

1We are abusing notation and use Pr to indicate “powering-up” Kronecker
products rather than the standard notation of repeated matrix multiplication.
We only multiply by Kronecker products in this paper.

(Our model is not restricted to symmetric tensors, it merely

simplifies the exposition.) The Kronecker product of tensors,

P⊗P, works just like the Kronecker product of matrices: every

element gets multiplied by every other element giving way to

a n2 × n2 × n2 tensor [2], [32]. For example take a 2 × 2 × 2
symmetric initiator tensor, and compute P2 = P ⊗ P

b c

c d
a b

b c

bb bc cb cc

bc bd cc cd

cb cc db dc

cc cd dc dd

ba bb ca cb

bb bc cb cc

ca cb da db

cb cc db dc

ab ac bb bc

ac ad bc bd

bb bc cb cc

bc bd cc cd

aa ab ba bb

ab ac bb bc

ba bb ca cb

bb bc cb cc

(1)

The Symmetric HyperKron Model with Triangles. Given

an n × n × n initiator tensor P of probabilities, construct the

rth Kronecker Product of P, Pr = P ⊗ Pr−1. Then Pr is of

dimension nr × nr × nr . Generate a set of hyperedges where

we include hyperedge (i, j, k) with probability Pr
i jk . For each

generated hyperedge, insert three undirected edges (i, j), ( j, k),

and (i, k). Duplicate edges are coalesced into a single edge.

This results in an undirected graph on nr vertices. The values

of i, j, k need not be unique, so that we may just place an edge

(or a loop). Because we insert undirected edges, it makes the

most sense to consider this model with symmetric tensors, then

we can restrict our generation to cases where i ≤ j ≤ k (for

instance) to minimize the number of duplicates.

IV. EFFICIENT GENERATION

A simple algorithm to generate a HyperKron model is to

explicitly generate the tensor Pr and then to explicitly sample

Bernoulli random variables (coin-flips) for each entry in the

tensor. If N = nr is the dimension of the tensor, this is an

O(N3) algorithm, and does not yield efficient generation of

realistically large networks. The ideal case for a generation

algorithm should do O(m) or O(m log N ) work where m is the

number of edges in the output. Note that r = log N . We will

show how to get an O(mr2) method, which can be achieved

by adapting the idea of grass hopping from our recent paper

on generating graphs from matrices of probabilities [33].

Moreno et al. [29] first pointed out that Kronecker matrices

have Erdős-Rényi sub-regions, and our approach is based on

this idea. Recall that an Erdős-Rényi graph is sampled from a

matrix where every edge has the same probability of occurring.

An Erdős-Rényi region is a set of entries in Pr where all the

probability values are the same. For instance, note that the

probability ab occurs multiple times in (1). Edges in these

regions can be generated by a waiting time, geometric variable,

or grass-hopping method [3], [15], [20], [33]. That is, we

sample a geometric random variable to find the gap between

successive edges. Thus, the method only does work proportional

to the number of edges within the region. What is difficult is

to identify where these Erdős-Rényi regions occur and then

how to map from these regions back to entries in Pr .

In the remainder of this section, we show (i) that the

number of Erdős-Rényi blocks is sufficiently small that this

approach will work given that we have to at least look at

each block; (ii) how to sample edges in a multiplication table
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The HyperKron sampling algorithm.
· For each length-r multiset of {0, 1, . . . , n3 − 1} (call it s)
· Compute the probability p for region s.
· Let t be the total length of the region s.
· Set the index I to −1
· While the index I is less than t

· Sample a geometric rand. var. with prob p.
· Increment the index I by the sample.
· If the index I is still less than t
· Identify the multiset permutation p for I
· Compute the multiplication table index J for p
· MortonDecode(J, n, n, n) gives a hyperedge in Pr

Fig. 1. The pseudocode for our fast hyperedge sampling algorithm on a
HyperKron model. An implementation is at www.cs.purdue.edu/homes/dgleich/
codes/hyperkron

view of the repeated Kronecker product by grass-hopping

(that is, sampling geometric random variables) and unranking

multiset permutations; and (iii) how to identify entries in Pr by

translating the multiplication table indices through a Morton

code procedure. The final algorithm is given in Figure 1 for

reference. Our procedure discussed in this section assumes a

general initiator tensor P that need not be symmetric.

A. A small number of Erdős-Rényi blocks

First, we show that there are fewer than O(N ) Erdős-Rényi

regions in the graph. Let P be n × n × n, and r be the number

of HyperKron products, so that there are N = nr nodes in the

graph. Notice that each probability value in Pr is the product of

r values from P. Entries of P can appear more than once in the

product, and the entries of Pr are only unique up to permutation.

Thus, the total number of unique probability values in Pr is

n3 multi-choose r:
(
n3+r−1

r

)
. This goes to O(rn

3−1), which is

less than the O(nr ) nodes of the graph. (This can be verified

by a simple argument similar to [33]).

B. Multiplication tables & HyperKron tensors

Each Erdős-Rényi region is identifiable by its unique product

of elements from Pr , a probability value. Let us order these

probability values. To that end, first number the entries of P
from 0 through n3 − 1. Then when writing an entry of Pr ,

associate each element in the product with the sequence of r
integers. For example, if P is 2 × 2 × 2 as in (1), map each of

the 8 entries to an index between 0 and 7. Probability ada in

P3 would be mapped to 070, where a = 0 and d = 7.

It isn’t obvious how to easily identify each of the locations

of ada in P3. (Or more generally, in Pr .) We first solve an

easier problem and then later determine how to translate back

to Pr . If we re-order the entries of P3 so that ada = 070
occurred exactly in locations [0, 0, 7], [0, 7, 0], [7, 0, 0], then the

locations are easy to find—they are the permutations of [070].
We will call this re-ordering a multiplication table. Define

v = vec(P) to be the initiator tensor as a length-n3 vector

proceeding in a column-major fashion, e.g. the vectorized

version of (1) is [a, b, b, c, b, c, c, d]. Define a r-dimensional

multiplication table: M (i, j, . . . , k︸�����︷︷�����︸
r indices

) = vivj · · · vk︸�����︷︷�����︸
r terms

. For instance,

M (0, 0, 7) = M (0, 7, 0) = M (7, 0, 0) = aad.

The start of our strategy is: for each unique probability in

Pr , given by a multiset of indices as in §IV-A, “grass-hop”

sample through the locations in the multiplication table where

the probability is all the same. We will see how to do this

efficiently next in §IV-C, and finally see how to convert between

entries of the multiplication table M and Pr in §IV-D.

C. Grass-Hopping Kronecker Tensors

Given an Erdős-Rényi region in Pr or M , we now discuss

how to “grass-hop” within that region to find successive

hyperedges. Say that our Erdős-Rényi region corresponds with a

probability which is mapped to indices p = v(i1)v(i2) · · · v(ir )

where v = vec(P) as in §IV-B. Recall that each of the elements

of v are mapped to a numerical index between 0 and n3−1. As

established in §IV-B, the locations of p in the r-dimensional

multiplication table correspond exactly with permutations of

i1, i2, . . . , ir . Note that these are permutations of multisets, or

sets in which elements can occur more than once. We label

each permutation lexicographically from 0 to t − 1 where

t = m!/(a1!a2! . . . ar !) is the number of permutations of the

multiset i1, . . . , ir , m is the cardinality of the multiset, and ai
is the number of times that the ith element appears.

The idea for generation then, is that we can easily identify

indices between 0 and t − 1 where edges occur because each

hyperedge occurs with the same probability p. As previously

hinted, this is done by sampling a geometric random variable

to compute the gap until the next edge. See the discussions

in [33], and [3], [15], [20] for more about this technique.

Given the indices where hyperedges occurred, we then need

to map them to entries of the multiplication table. This can be

done by unranking multiset permutations [10].

For example, suppose that the Erdős-Rényi region corre-

sponds to a probability with indices [0, 1, 1, 2]. The permuta-

tions of this multiset are (lexicographically):

[0, 1, 1, 2] → 0 [0, 2, 1, 1] → 2 . . . [2, 2, 0, 1] → 10
[0, 1, 2, 1] → 1 . . . . . . [2, 2, 1, 0] → 11 (2)

Unranking this multiset corresponds to taking one of the indices

0, . . . , 11 and generating the corresponding permutation. This

step can be done in time O(r2) without any precomputation.

We now can use a geometric random variable to repeatedly

”hop” to the next successful hyperedge, through the labels

0-(number of permutations -1), until the end is reached. This

gives a list of entries in the Multiplication table.

D. Morton Codes

The relationship between the locations of the r-dimensional

multiplication table entry and the 3-dimensional HyperKron

tensor Pr depends on Morton codes as was described for

the case of matrices [33]. We extend that analysis to the

3-dimensional HyperKron tensor. A Morton code reflects a

particular way of ordering multidimensional data. The particular

relationship we use is established by the following theorem.

Theorem 1. Let Pr be an n×n×n tensor, and v be the column
major representation of P. Consider an element in the vector-
ized multiplication table M with index (p1, p2, . . . , pr ). Let I be
the lexicographical index of the element (p1, p2, . . . , pr ). Then
the 3-dimensional Morton Decoding of I in base n provides
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Fig. 2. Time to generate hyper-
edges for a HyperKron model as r
varies shows linear scaling in 2r .

Fig. 3. Global clustering coeffi-
cients vary with changing Hyper-
Kron Parameters. Here r = 10.

the row, column, and slice indices of an element in Pr with
the same value.

The proof of this result is uninsightful, so we omit it here.

See [33] for the proof for the 2d Morton decoding.

E. Runtime performance

We implemented the generation procedure (Figure 1) in

the Julia language with a goal towards optimizing easy-to-

avoid computational overhead. The resulting program generates

hyperedges at about 1,000,000 per second on a single-thread

of modern desktop computer. We evaluated the scalability of

the code up to 20 million edges in three scenarios. All three

scenarios use a 2 × 2 × 2 symmetric initiator tensor P. This

gives four parameters a, b, c, d as in equation (1). In the first

case, we set a = 0.05, b = 0.3, c = 0.4, and choose d such that

the expected number of hyperedges (a+3b+3c+ d)r (average
degree in Figure 2) is 5 times the number of nodes. In the

second case, we set a = 0.9, b = 0.3, d = 0.0 and choose c such

that the expected number of hyperedges is 10 times the number

of nodes. In the third case, we set a = 0.3, c = 0.3, d = 0.1
and choose b so there are 20 times the number of hyperedges

as nodes. The time it takes to generate graphs as r varies from

10 to 20 is shown in Figure 2. Although the theoretical scaling

of our procedure is O(mr2), we observe linear scaling in this

regime because the r2 work can be done efficiently within an

array of 4r bytes that typically fits in L1 cache.

V. HYPERKRON PROPERTIES: NON-TRIVIAL CLUSTERING

The HyperKron model allows for generating models with

significant clustering even with few edges, an improvement over

the Kronecker model, (see §VI). We use the global clustering

coefficient: 6|K3 |/|W |, where |K3 | is the number of triangles,

and |W | is the number of wedges, to measure how much

network nodes tend to form triangles [38]. Fixing a and d
parameters, and using r = 10, Figure 3 demonstrates that for

varying all values of b and c the global clustering is always

above 0.05, and is often much larger. It is large initially because

all edges are in triangles. As the network becomes denser (b, c
get larger), the wedges emerge causing the coefficient to drop.

Finally, as the network becomes quite dense, these wedges

combine into triangles. But throughout, clustering remains.

This is significant because we can still achieve good clustering

with sparse networks (the real-world behavior) with our model.

In the long version [13] we also compute practical estimates

of the total number of generated edges.

VI. FITTING HYPERKRON TO REAL DATA

We demonstrate now the HyperKron model can be fit to

real-world data by hand-tuning the coefficients. Four real-world

networks were chosen: email is a list of email exchanges be-

tween members of a University (1133 nodes) [19]; Villanova62
(7772) and MU68 (15k) are from the facebook 100 data set [37]

where nodes represent people and edges are friendships; and

homo is a biology network of protein interactions (8887) [36].

To fit real-world data to our HyperKron model, we choose

to fit the model to just the set of triangles in the network as

this is the natural structure for HyperKron to generate. (See

§VI-B where we consider the full network.) See our parameter

choices for a symmetric HyperKron model with a 2 × 2 × 2
initiator matrix in Table I. For comparison, we fit the data sets

to the Kronecker model using the method-of-moments [17]

(KGMome for short) and maximum likelihood [26] (KGFit).

We fit those models to the full edge data in addition to the

extracted triangle data. While there are other models that

would also capture clustering [24], [31], these require far more

parameters and so we don’t compare against them.

A. Clustering Coefficients

Global clustering coefficients are described in §V. The

average local clustering coefficient is the average over the local

clustering coefficient defined for each node u: 2|K3(u) |/|W (u) |,
where |K3(u) | is the number of triangles for which u is a

member, and |W (u) | is the number of wedges for which u
is a member. A big improvement of the HyperKron model

over other graph models such as the Kronecker model, is the

ability to capture clustering. Regardless of using the full data,

or restricted triangle data, the Kronecker models do not capture

clustering properties as closely as HyperKron (see Table I).

There remain properties of the real-world networks that

HyperKron does not possess, including higher-order clustering.

We use the methodology and code presented in [40] to compute

higher order clustering coefficients. The precise details are not

relevant for our case, but these extend clustering coefficients

to larger cliques. We find that the HyperKron model does not

display clustering in terms of four cliques, five cliques, or six

cliques (3rd, 4th, and 5th order).

B. Skewed Degrees

The HyperKron model also preserves is a highly skewed

degree distribution. Figure 4(a) shows the degree distributions

in log-scale for two of our networks: Villanova62, and MU78,

along with their HyperKron fits. We also show Loess smoothed

estimates to show broader properties. There are two notable

behaviors in the HyperKron degree distribution. First, there

are two “tails” in nodes with small degree. The tail with

larger counts are nodes with even degree. They occur in higher

frequency since the model most often adds two neighbors to a

node at once. Conversely, the tail with smaller counts are nodes

with odd degree, since a single edge is placed infrequently.
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TABLE I
FITTING REAL WORLD DATA TO THE HYPERKRON MODEL. THE ONLY

MODEL WITH NON-TRIVIAL GLOBAL AND LOCAL CLUSTERING ARE THE

HYPERKRON (HKRON) FITS. WE LIST THE MODEL PARAMETERS, NUMBER

OF EDGES, GLOBAL CLUSTERING COEFFICIENT, MEAN-LOCAL CLUSTERING

COEFFICIENT, AND THE SIZE OF THE LARGEST CONNECTED COMPONENT.

global local lcc
Network name edges clust clust size

email full 5451 0.166 0.220 1133
KGFit: (.9538, .6196, .1463) r = 11 4941 0.032 0.060 1803
KGMome: (1.0, 0.5241, 0.2990), r = 11 5945 0.035 0.031 1351

email triangles 4229 0.232 0.366 837
HKron: (0.999, 0.31, 0.2, 0.0001), r = 10 4546 0.140 0.346 735
KGFit: (.9036, .6946, .2056), r = 10 4736 0.052 0.076 949
KGMome: (1.0, 0.5132, 0.2688), r = 11 4651 0.034 0.032 1393

homo full 33k 0.070 0.133 8887
KGFit: (.9895, .5569, 0.1147), r = 14 34k 0.013 0.025 6547
KGMome: (1.0, 0.5676, 0.0759), r=14 33k 0.015 0.033 6333

homo triangles 19k 0.141 0.264 3783
HKron: (0.8, 0.115, 0.15, 0.83), r = 12 19k 0.101 0.164 4072
KGFit: (.9487, .6416, .1832), r = 12 20k 0.027 0.048 3194
KGMome: (1.0, 0.5227, 0.0882), r=14 20k 0.013 0.022 4502

Villanova62 full 315k 0.166 0.235 7755
KGFit: (.9999, .7064, .388), r = 13 326k 0.056 0.064 8187
KGMome: (1.0, 0.696, 0.4086), r = 13 326k 0.054 0.059 8185

Villanova62 triangles 311k 0.168 0.258 7476
HKron: (0.9, 0.4, .24, .001), r = 13 306k 0.111 0.265 7944
KGFit: (0.9999, .7058, .3865), r = 13 322k 0.055 0.064 8187
KGMome: (1.0, 0.6965, 0.4054), r = 13 323k 0.054 0.059 8186

MU78 full 649k 0.152 0.214 15k
KGFit: (.996, .675, .3992), r = 14 690k 0.034 0.037 16k
KGMome: (1.0, 0.6305, 0.4790), r = 14 672k 0.028 0.026 16k

MU78 triangles 637k 0.155 0.240 15k
HKron: (0.9, 0.42, 0.20, 0.001), r = 14 625k 0.097 0.295 16k
KGFit: (0.9993, 0.6721, 0.3973), r = 14 675k 0.037 0.034 16k
KGMome: (1.0, 0.6311, 0.4745), r = 14 661k 0.028 0.026 16k

Second, the high-degree vertices oscillate, an occurrence in the

original Kronecker model as well. The peaks can be smoothed

out by perturbing the probability matrix as demonstrated in [35].

We made several tweaks to the HyperKron generation to

address these issues. Our explanation here is slightly abridged,

more detail can be found in our long version [13]. First, we add

a noise parameter to the HyperKron model in a generalization

of the method in [35]. Using this added noise, we fit HyperKron

to the set of edges involved in triangles, using the same initiator

parameters as before. The second adjustment is to account for

the set of remaining edges (those not involved in triangles).

We fit this residual set of edges to a Kronecker model using

the method of moments in [17], with an added noise parameter

as in [35]. Note that when we add the Kronecker graph to

the HyperKron graph, many of the edges overlap. So finally,

we add in an Erdős-Rényi graph with an expected number of

edges set to add enough edges to get back to the number of

edges of the original graph.

Figure 4(b) gives the degree distributions of the full original

network data in log-scale, along with the improved fitting. For

Villanova62, the HyperKron noise was set to 0.15, and the

Kronecker noise was set to 0.1. For MU78 the HyperKron noise

was set to .2 and the Kronecker noise was set to 0.05. The two

tailed behavior is eliminated by fitting to the non-triangle edges,

(a) (b)

Fig. 4. (a) HyperKron preserves highly skewed degree distribution with
notable behaviors discussed in the text; (b) Improvements to the HyperKron
model eliminates two-tailed behavior, and almost entirely removes oscillation.

and the oscillation behavior is almost entirely removed by the

noise. The fittings also retain non-trivial clustering coefficients.

VII. MODEL FLEXIBILITY

Thus far, HyperKron was described in a setting where

triangles are associated with each generated hyperedge. As

we have seen, this is an appropriate choice for settings where

we expect 2nd order (triangle-based) clustering in undirected

networks. There are more complex types of network data, and

we now show that HyperKron is also relevant here.

The S. cerevisiae transcription regulatory network is a

directed, signed graph that describes gene expression in

the common yeast organism. We extract all nodes involved

in coherent feed forward loops (an important higher-order

structure in this network [27]), leaving a network with 61 nodes

and 108 directed, signed edges (92 positive, 16 negative). By

manually tweaking entries to get the number of edges to match,

we generated a HyperKron model using a 2× 2× 2 tensor with

P111 = 0.14 P121 = 0.25 P211 = 0 P221 = 0.45
P112 = 0.55 P122 = 0 P212 = 0.31 P222 = 0.06

and r = 7. We associated each hyperedge with one of the four

coherent feed-forward loops based on a biased random choice,

the type 1 had probability 1/2, the type 2 motif had probability

1/4, and the type 3 and 4 motifs had probability 1/8 (see [27]

for more about these types). These were chosen because the

real network doesn’t have any type 3 and 4 feed-forward loops.

When we assemble the motifs placed via these hyperedges into

a network, any two motifs that share an edge with the same

direction will be coalesced by summing the signs. The largest

connected component of the resulting network had 69 nodes

and 108 directed, signed edges (90 positive, 18 negative).

The real network has 38 coherent feed forward loops and

2 incoherent feed forward loops, while the HyperKron model

has 36 and 1, respectively. The presence of incoherent feed

forward loops is an emergent behavior because we only ever

generated coherent loops. We might ask if finding 2 incoherent

feed forward loops in the real network is likely to occur or not.

By generating 10000 instances of our model, we find at least 2

incoherent feed forward loops in roughly 10%. Consequently,

the presence of these two loops in the real data could easily

have occurred by chance. Our code to reproduce this experiment

will be posted online.
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VIII. RELATED & FUTURE WORK & DISCUSSION

Let us be clear that we do not believe that HyperKron is

a universal network model that is always appropriate. Rather,

it provides some complementary directions in the large space

of network models. One of the advantages of HyperKron is

that it provides an easy and flexible means to incorporate

higher-order structure. This was used as well in [8] where they

associated hyperedges with triangles. We use this flexibility to

model directed, signed networks in §VII and networks with

non-trivial clustering coefficients in §VI-A. It is not obvious

how to generate these types of structures for models based on

matrices of probabilities such as Erdős-Rényi, Chung-Lu, or

kernel functions [20], as well as for evolutionary models such

as the copying model or forest-fire model. The HyperKron

model is also easy to simulate in parallel – you can parallelize

over the Erdős-Rényi regions, for instance.

That said, there are other types of network models that

possess clustering. Newman [31] studied a configuration model

that incorporated the triangle degree of each node. Kolda et

al. [24] proposed the BTER model that has large clustering

coefficients. These are both excellent models with clustering,

but is unclear how to incorporate more complex types of

structure such as signs into these models. Likewise, models

that randomly generate points for each node and then connect

nearby nodes based on a metric space are often known to have

non-trivial local clustering [9], [22]. However, these models

tend to be unrealistically dense.

HyperKron is easy to combine with the majority of other

ideas that have been proposed to extend Kronecker models.

For instance, adapting the mKPGM model [28] to our setting

simply involves a deterministic choice for some of the early

tensors. Likewise, the MAG model uses a set of Kronecker

models to handle attributed graphs [23]. It remains open how

to pragmatically fit HyperKron to real data similar to [17]

or [26]. This remains one of our most important next steps.
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